1 research outputs found

    Network Overload due to Massive Attacks

    Get PDF
    We study the cascading failure of networks due to overload, using the betweenness centrality of a node as the measure of its load following the Motter and Lai model. We study the fraction of survived nodes at the end of the cascade pfp_f as function of the strength of the initial attack, measured by the fraction of nodes pp, which survive the initial attack for different values of tolerance α\alpha in random regular and Erd\"os-Renyi graphs. We find the existence of first order phase transition line pt(α)p_t(\alpha) on a p−αp-\alpha plane, such that if p<ptp <p_t the cascade of failures lead to a very small fraction of survived nodes pfp_f and the giant component of the network disappears, while for p>ptp>p_t, pfp_f is large and the giant component of the network is still present. Exactly at ptp_t the function pf(p)p_f(p) undergoes a first order discontinuity. We find that the line pt(α)p_t(\alpha) ends at critical point (pc,αc)(p_c,\alpha_c) ,in which the cascading failures are replaced by a second order percolation transition. We analytically find the average betweenness of nodes with different degrees before and after the initial attack, investigate their roles in the cascading failures, and find a lower bound for pt(α)p_t(\alpha). We also study the difference between a localized and random attacks
    corecore